metrics.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:tefla 作者: litan 项目源码 文件源码
def get_metrics(actual_labels_file, predict_labels_file):
    util.check_required_program_args([actual_labels_file, predict_labels_file])
    actual_labels_df = pd.read_csv(actual_labels_file, names=['image', 'label'], header=0)
    predict_labels_df = pd.read_csv(predict_labels_file, names=['image', 'label'], header=0)

    # assumes equal number of items in both file
    assert (actual_labels_df['image'].count()) == predict_labels_df['image'].count()

    actual_labels_df = actual_labels_df.sort_values(by=['image'])
    predict_labels_df = predict_labels_df.sort_values(by=['image'])
    assert (list(actual_labels_df['image'].values) == list(predict_labels_df['image'].values))

    # Hopefully y_true and y_pred are alligned properly.
    y_labels = actual_labels_df['image'].values
    y_true = actual_labels_df['label'].values
    y_pred = predict_labels_df['label'].values

    print "Confusion matrix:"
    print confusion_matrix(y_true, y_pred)
    print ""
    print "Classification report:"
    print classification_report(y_true, y_pred)

    accuracy = accuracy_score(y_true, y_pred)
    kappa = quadratic_weighted_kappa(y_true, y_pred)

    print('Accuracy: %.4f' % accuracy)
    print('Kappa: %.4f' % kappa)
    print ""
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号