def test_detector(self):
dataset, user_vocab, system_vocab = self.Reader.get_dataset()
_labels = self.Reader.get_labels()
labels = [lb.label for lb in _labels]
model = self.make_model(user_vocab, system_vocab)
model_if = model.create_interface(self.buckets, self.TRAIN_DIR)
train_x, test_x, train_t, test_t = train_test_split(dataset, labels, test_size=0.2, random_state=42)
with tf.Session() as sess:
detector = Detector(sess, model_if)
detector.train(sess, train_x, train_t)
y = [detector.predict(sess, p) for p in test_x]
report = classification_report(test_t, y, target_names=DbdReader.get_label_names())
print(report)
test_with_dbd.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录