def classify():
reader = DbdReader(DATA_DIR, TRAIN_PATH, target_for_vocabulary=TARGET_PATH, max_vocabulary_size=_vocab_size_, filter="140", threshold=0.6, clear_when_exit=False)
reader.init()
dataset, user_vocab, system_vocab = reader.get_dataset()
labels = reader.get_labels()
model = make_model(user_vocab, system_vocab)
model_if = model.create_interface(_buckets_, TRAIN_DIR)
train_x, test_x, train_t, test_t = train_test_split(dataset, labels, test_size=0.2, random_state=42)
with tf.Session() as sess:
detector = Detector(sess, model_if)
detector.train(sess, train_x, train_t)
y = [detector.predict(sess, p) for p in test_x]
y = [lb for lb, prob in y]
report = classification_report([lb.label for lb in test_t], y, target_names=DbdReader.get_label_names())
print(report)
run_seq2seq.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录