def test_svm_estimator(estimator, notes, encodings_train, labels_train,
encodings_test, labels_test):
t0 = time()
estimator.fit(encodings_train, labels_train)
print("Time cons: %.2fs, type: %s" % (time() - t0, notes))
predicted = estimator.predict(encodings_test)
accuracy = metrics.accuracy_score(labels_test, predicted)
print("Accuracy: %.5f" % accuracy)
report = metrics.classification_report(labels_test, predicted)
print(report)
prec_recall_f_score = metrics.precision_recall_fscore_support(
labels_test, predicted)
print('-' * 10)
prec_recall_f_score_dict = {
'prec': np.mean(prec_recall_f_score[0]),
'recall': np.mean(prec_recall_f_score[1]),
'f_score': np.mean(prec_recall_f_score[2])
}
return accuracy, prec_recall_f_score_dict
svm_clusterization_test.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录