def test(self):
lenW = len(self.vectorizer.vocabulary_)
W = 3*lenW
Y_true = []
Y_pred = []
for i,line in enumerate(self.test_lines):
if line['type'] == 'q':
r = line['answer']
id = line['id']-1
indices = [idx for idx in range(i-id, i+1)]
memory_list = self.L_test[indices]
m_o1 = O_t([id], memory_list, self.s_Ot)
m_o2 = O_t([id, m_o1], memory_list, self.s_Ot)
bestVal = None
best = None
for w in self.vectorizer.vocabulary_:
val = self.sR([id, m_o1, m_o2], self.H[w], memory_list, self.V)
if bestVal is None or val > bestVal:
bestVal = val
best = w
Y_true.append(r)
Y_pred.append(best)
print metrics.classification_report(Y_true, Y_pred)
评论列表
文章目录