def fitAndPredict(self):
# classifier = LogisticRegression()
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Logistic:'
# print classification_report(self.testLabel, pred_labels)
pred_labels = {}
classifier = SVC()
classifier.fit(self.trainingSet, self.trainingLabel)
for user in self.testDict:
pred_labels[user] = classifier.predict([[self.MUD[user], self.RUD[user], self.QUD[user]]])
# print 'SVM:'
# print classification_report(self.testLabel, pred_labels)
return pred_labels
# classifier = DecisionTreeClassifier(criterion='entropy')
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Decision Tree:'
# print classification_report(self.testLabel, pred_labels)
# return self.trainingSet, self.trainingLabel, self.testSet, self.testLabel
评论列表
文章目录