def fitAndPredict(self):
# classifier = LogisticRegression()
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Logistic:'
# print classification_report(self.testLabel, pred_labels)
self.classifier = SVC()
self.classifier.fit(self.trainingSet, self.trainingLabel)
pred_labels = {}
for user in self.testDict:
pred_labels[user] = self.classifier.predict([[self.BDS[user]]])
# print 'SVM:'
# print classification_report(self.testLabel, pred_labels)
# classifier = DecisionTreeClassifier(criterion='entropy')
# classifier.fit(self.trainingSet, self.trainingLabel)
# pred_labels = classifier.predict(self.testSet)
# print 'Decision Tree:'
# print classification_report(self.testLabel, pred_labels)
# return self.trainingSet, self.trainingLabel, self.testSet, self.testLabel
return pred_labels
评论列表
文章目录