def performSVMClass(X_train, y_train, X_test, y_test):
classifier = svm.SVC()
classifier.fit(X_train, y_train)
results = classifier.predict(X_test)
# colors = {1:'red', 0:'blue'}
# df = pd.DataFrame(dict(adj=X_test[:,5], return_=X_test[:,50], label=results))
# fig, ax = plt.subplots()
# colors = {1:'red', 0:'blue'}
# ax.scatter(df['adj'],df['return_'], c=df['label'].apply(lambda x: colors[x]))
# # ax.scatter(X_test[:,5], X_test[:,50], c=y_test_list.apply(lambda x: colors[x]))
# plt.show()
# print y_pred
# cm = confusion_matrix(y_test, results)
# print cm
# plt.figure()
# plot_confusion_matrix(cm)
# plt.show()
num_correct = (results == y_test).sum()
recall = num_correct / len(y_test)
# print "SVM model accuracy (%): ", recall * 100, "%"
return recall*100
评论列表
文章目录