def neural_network(self, sensors_set):
features = list(self.dataset.get_sensors_set_features(sensors_set))
print("NEURAL NETWORK.....")
print("CLASSIFICATION BASED ON THESE SENSORS: ", self.dataset.get_remained_sensors(sensors_set))
print("NUMBER OF FEATURES: ", len(features))
train_features, train_classes, test_features, test_classes = self.__get_sets_for_classification(
self.dataset.get_train, self.dataset.get_test, features)
train_features_scaled, test_features_scaled = util.scale_features(train_features, test_features)
classifier_nn = MLPClassifier(hidden_layer_sizes=(const.PAR_NN_NEURONS[sensors_set],),
alpha=const.PAR_NN_ALPHA[sensors_set], max_iter=const.PAR_NN_MAX_ITER,
tol=const.PAR_NN_TOL)
classifier_nn.fit(train_features_scaled, train_classes)
test_prediction = classifier_nn.predict(test_features_scaled)
acc = accuracy_score(test_classes, test_prediction)
print("ACCURACY : " + str(acc))
print("END NEURAL NETWORK")
if not os.path.exists(const.DIR_RESULTS):
os.makedirs(const.DIR_RESULTS)
file_content = "acc\n" + str(acc)
with open(const.DIR_RESULTS + "/" + str(sensors_set) + const.FILE_NEURAL_NETWORK_RESULTS, 'w') as f:
f.write(file_content)
# support vector machine algorithm training on training al train set and test on all test set
评论列表
文章目录