classifier_hyperopt_tuning.py 文件源码

python
阅读 17 收藏 0 点赞 0 评论 0

项目:jubakit 作者: jubatus 项目源码 文件源码
def function(params):
  """
  Function to be optimized.
  """
  # generate config
  config = jubatus_config(params)
  # create a classifier service.
  classifier = Classifier.run(config)
  # scoring metric (default accuracy metric)
  metric = accuracy_score
  # calculate cross-validation score
  score = cv_score(classifier, dataset, metric=metric)
  # stop the classifier
  classifier.stop()
  # print score and hyperparameters
  print_log(score, params)
  # hyperopt only minimize target function and we convert the accuracy score to be minimized.
  return -1.0 * score
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号