def _discriminator(self, input_images, dims, train_phase, activation=tf.nn.relu, scope_name="discriminator",
scope_reuse=False):
N = len(dims)
with tf.variable_scope(scope_name) as scope:
if scope_reuse:
scope.reuse_variables()
h = input_images
skip_bn = True # First layer of discriminator skips batch norm
for index in range(N - 2):
W = utils.weight_variable([5, 5, dims[index], dims[index + 1]], name="W_%d" % index)
b = utils.bias_variable([dims[index + 1]], name="b_%d" % index)
h_conv = utils.conv2d_strided(h, W, b)
if skip_bn:
h_bn = h_conv
skip_bn = False
else:
h_bn = utils.batch_norm(h_conv, dims[index + 1], train_phase, scope="disc_bn%d" % index)
h = activation(h_bn, name="h_%d" % index)
utils.add_activation_summary(h)
shape = h.get_shape().as_list()
image_size = self.resized_image_size // (2 ** (N - 2)) # dims has input dim and output dim
h_reshaped = tf.reshape(h, [self.batch_size, image_size * image_size * shape[3]])
W_pred = utils.weight_variable([image_size * image_size * shape[3], dims[-1]], name="W_pred")
b_pred = utils.bias_variable([dims[-1]], name="b_pred")
h_pred = tf.matmul(h_reshaped, W_pred) + b_pred
return tf.nn.sigmoid(h_pred), h_pred, h
评论列表
文章目录