def exploremodel(self, seq1, len1, seq2, len2, labels):
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "model.ckpt")
preds = []
for d1, l1, d2, l2, l in utils.batch_iter(seq1, len1, seq2, len2, labels):
val1 = sess.run([self.pred], feed_dict={
self.input_seq1: d1,
self.input_len1: l1,
self.input_seq2: d2,
self.input_len2: l2,
self.labels: l,
self.initial_state: np.zeros((
Options.batch_size,
2 * Options.lstm_dim * Options.lstm_layers
)),
self.lstm_keep_prob: 1.0,
self.nnet_keep_prob: 1.0
})
preds.extend(val1[0])
classes = np.argmax(labels[:4900], axis=1)
cm = confusion_matrix(classes, preds)
print(cm)
print(np.mean(np.asarray(classes) == np.asarray(preds)))
for row in cm:
print(row / np.sum(row))
评论列表
文章目录