def __init__(self, content_path, style_path):
# 4D representations of the given content and style images
self.content_image = utils.preprocess(plt.imread(content_path))[np.newaxis]
self.style_image = utils.preprocess(plt.imread(style_path))[np.newaxis]
# The session and graph used for evaluating the content and style of the
# given content and style images
self.evaluation_g = tf.Graph()
self.evaluation_sess = tf.Session(graph=self.evaluation_g)
# The outputs (:0) of the intermediate layers of the VGG16 model used to represent the
# content and style of an input to the model
self.content_layer = config["content_layer"]
self.style_layers = config["style_layers"]
with self.evaluation_g.as_default():
# Import the VGG16 ImageNet predictor model graph into the evaluation_g member variable
tf.import_graph_def(utils.get_vgg_model(), name="vgg")
# The input to the VGG16 predictor model is the output (:0) of the first operation of the graph
self.input_tensor = [op.name for op in self.evaluation_g.get_operations()][0] + ":0"
EvaluationModel.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录