def init_params(options,W):
params = OrderedDict()
# W is initialized by the pretrained word embedding
params['Wemb'] = W.astype(config.floatX)
# otherwise, W will be initialized randomly
# n_words = options['n_words']
# n_x = options['n_x']
# params['Wemb'] = uniform_weight(n_words,n_x)
length = len(options['filter_shapes'])
for idx in range(length):
params = param_init_encoder(options['filter_shapes'][idx],params,prefix=_p('cnn_encoder',idx))
n_h = options['feature_maps'] * length
params['Wy'] = uniform_weight(n_h,options['n_y'])
params['by'] = zero_bias(options['n_y'])
return params
cnn_classifier.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录