timitphonemerec_test.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:mist-rnns 作者: rdipietro 项目源码 文件源码
def main():
  """ Test an RNN trained for TIMIT phoneme recognition. """

  args, params_str, layer_kwargs = parse_args()

  _, _, test_inputs, test_labels = timitphonemerec.load_split(args.data_dir, val=False,
                                                              mfcc=True, normalize=True)

  # Input seqs have shape [length, INPUT_SIZE]. Label seqs are int8 arrays with shape [length],
  # but need to have shape [length, 1] for the batch generator.
  test_labels = [seq[:, np.newaxis] for seq in test_labels]

  test_batches = utils.full_bptt_batch_generator(test_inputs, test_labels, TEST_BATCH_SIZE,
                                                 num_epochs=1, shuffle=False)

  model = models.RNNClassificationModel(args.layer_type, INPUT_SIZE, TARGET_SIZE, args.num_hidden_units,
                                        args.activation_type, **layer_kwargs)

  def _error_rate(valid_predictions, valid_targets):
    incorrect_mask = tf.logical_not(tf.equal(tf.argmax(valid_predictions, 1), tf.argmax(valid_targets, 1)))
    return tf.reduce_mean(tf.to_float(incorrect_mask))
  model.error_rate = _error_rate(model.valid_predictions, model.valid_targets)

  config = tf.ConfigProto()
  config.gpu_options.allow_growth = False
  sess = tf.Session(config=config)

  saver = tf.train.Saver()
  saver.restore(sess, os.path.join(args.results_dir, 'model.ckpt'))

  batch_inputs, batch_labels = next(test_batches)
  batch_targets = utils.one_hot(np.squeeze(batch_labels, 2), TARGET_SIZE)

  valid_predictions, valid_targets, error_rate = sess.run(
    [model.valid_predictions, model.valid_targets, model.error_rate],
    feed_dict={model.inputs: batch_inputs,
               model.targets: batch_targets}
  )

  print('%f' % error_rate)
  with open(os.path.join(args.results_dir, 'test_result.txt'), 'w') as f:
    print('%f' % error_rate, file=f)
评论列表


问题


面经


文章

微信
公众号

扫码关注公众号