def eval_accuracy_loss(X_data, y_data, BATCH_SIZE, top1_accuracy,top5_accuracy,loss_operation,images,y,RC,train_mode,regConst):
nImgs = len(X_data)
total_top1 = 0.0
total_top5 = 0.0
total_crossEn = 0.0
sess = tf.get_default_session()
for offset in range(0, nImgs, BATCH_SIZE):
batch_x = utils.load_image(X_data[offset:offset+BATCH_SIZE])
batch_y = y_data[offset:offset+BATCH_SIZE]
t1,t5,cEn = sess.run([top1_accuracy,top5_accuracy,loss_operation],
feed_dict={images:batch_x, y:batch_y, RC: regConst, KP:1, train_mode:False})
total_top1 += t1
total_top5 += t5
total_crossEn += (cEn *len(batch_x))
total_top1 /= nImgs
total_top5 /= nImgs
total_crossEn /= nImgs
return total_top1, total_top5, total_crossEn
评论列表
文章目录