sample.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:char-cnn-text-classification-tensorflow 作者: kinni 项目源码 文件源码
def sample(args):
    print 'Loading data'
    x, y, vocabulary, vocabulary_inv = utils.load_data()

    text = [list(args.text)]
    sentences_padded = utils.pad_sentences(text, maxlen=x.shape[1])
    raw_x, dummy_y = utils.build_input_data(sentences_padded, [0], vocabulary)

    checkpoint_file = tf.train.latest_checkpoint(args.checkpoint_dir)
    graph = tf.Graph()
    with graph.as_default():
        sess = tf.Session()
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            # input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]

            # Tensors we want to evaluate
            predictions = graph.get_operation_by_name("output/predictions").outputs[0]

            predicted_result = sess.run(predictions, {input_x: raw_x, dropout_keep_prob: 1.0})
            if (predicted_result[0] == 0):
                print args.text + ": negative"
            else:
                print args.text + ": positive"
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号