def test():
from io import BytesIO
x = [datetime.datetime(2017, 4, 6, 0, 0), datetime.datetime(2017, 4, 7, 0, 0), datetime.datetime(2017, 4, 8, 0, 0), datetime.datetime(2017, 4, 11, 0, 0), datetime.datetime(2017, 4, 12, 0, 0), datetime.datetime(2017, 4, 13, 0, 0), datetime.datetime(2017, 4, 14, 0, 0), datetime.datetime(2017, 4, 16, 0, 0), datetime.datetime(2017, 4, 17, 0, 0),
datetime.datetime(2017, 4, 18, 0, 0), datetime.datetime(2017, 4, 19, 0, 0), datetime.datetime(2017, 4, 20, 0, 0), datetime.datetime(2017, 4, 22, 0, 0), datetime.datetime(2017, 4, 23, 0, 0)]
y = [[0.0, 15.0, 9.0, 0.0, 9.0, 5.0, 6.0, 0.0, 11.0, 9.0, 5.0, 6.0, 0.0, 11.0],
[15.0, 17.0, 0.0, 20.0, 20.0, 19.0, 30.0, 32.0, 23.0, 20.0, 19.0, 30.0, 32.0, 23.0]]
grid = [
[{'date': datetime.datetime(2017, 4, 3, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 4, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 5, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 6, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 15.]}, {'date': datetime.datetime(2017, 4, 7, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 15., 17.]}, {'date': datetime.datetime(2017, 4, 8, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 9., 0.]}, {'date': datetime.datetime(2017, 4, 9, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}],
[{'date': datetime.datetime(2017, 4, 10, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 11, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 20.]}, {'date': datetime.datetime(2017, 4, 12, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 9., 20.]}, {'date': datetime.datetime(2017, 4, 13, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 5., 19.]}, {'date': datetime.datetime(2017, 4, 14, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 6., 30.]}, {'date': datetime.datetime(2017, 4, 15, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 16, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 32.]}],
[{'date': datetime.datetime(2017, 4, 17, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 11., 23.]}, {'date': datetime.datetime(2017, 4, 18, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 19, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 20, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 21, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 22, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 23, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}],
[{'date': datetime.datetime(2017, 4, 24, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 11., 23.]}, {'date': datetime.datetime(2017, 4, 25, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 26, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 27, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 28, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 29, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}, {'date': datetime.datetime(2017, 4, 30, 0, 0, tzinfo=tzoffset(None, 10800)), 'values': [ 0., 0.]}]
]
dashboard = {
"summary": "Anna work-out",
"empty_image": "../amazon-dash-private/images/old-woman.png",
"images_folder": "../amazon-dash-private/images/"
}
labels = [
{"summary": "Morning work-out", "image": "../amazon-dash-private/images/morning4.png"},
{"summary": "Physiotherapy", "image": "../amazon-dash-private/images/evening2.png"}
]
absent_labels = [
{'image_grid': '../amazon-dash-private/images/absent_ill_grid.png',
'image_plot': '../amazon-dash-private/images/absent_ill_plot.png',
'summary': 'Sick'},
{'image_grid': '../amazon-dash-private/images/absent_vacation_grid.png',
'image_plot': '../amazon-dash-private/images/absent_vacation_plot.png',
'summary': 'Vacation'}
]
weather = {'day': [datetime.datetime(2017, 4, 22, 0, 0),
datetime.datetime(2017, 4, 23, 0, 0),
datetime.datetime(2017, 4, 24, 0, 0),
datetime.datetime(2017, 4, 25, 0, 0)],
'icon': ['sct', 'ovc', 'hi_shwrs', 'sn'],
'temp_max': [6.64, 6.38, 4.07, 6.91],
'temp_min': [-0.58, -2.86, -1.87, -1.91],
'images_folder': '../amazon-dash-private/images/'}
t0 = datetime.datetime.now()
image_data = draw_calendar(grid, x, y, weather, dashboard, labels, absent_labels,
ImageParams(
dashboard='',
format='gif',
style='seaborn-talk',
xkcd=1,
rotate=0
)
)
t1 = datetime.datetime.now()
print(t1 - t0)
image_file = BytesIO(image_data)
image = PIL.Image.open(image_file)
image.show()
# with open('test.png', 'wb') as png_file:
# png_file.write(image)
#plt.show()
#todo speed it up. too many rescalings as I see from profiling.
# may be using artists (http://stackoverflow.com/questions/41453902/is-it-possible-to-patch-an-image-in-matplotlib)
# will reduce number of rescaling?
# now it looks like matplotlib rescales after each operation
calendar_image.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录