def __init__(self, *args, **kwargs):
super(NuPICPlotOutput, self).__init__(*args, **kwargs)
# Turn matplotlib interactive mode on.
plt.ion()
self.dates = []
self.convertedDates = []
self.value = []
self.rawValue = []
self.allValues = []
self.allRawValues = []
self.predicted = []
self.anomalyScore = []
self.anomalyLikelihood = []
self.actualLine = None
self.rawLine = None
self.predictedLine = None
self.anomalyScoreLine = None
self.anomalyLikelihoodLine = None
self.linesInitialized = False
self._chartHighlights = []
fig = plt.figure(figsize=(16, 10))
gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
self._mainGraph = fig.add_subplot(gs[0, 0])
plt.title(self.name)
plt.ylabel('Value')
plt.xlabel('Date')
self._anomalyGraph = fig.add_subplot(gs[1])
plt.ylabel('Percentage')
plt.xlabel('Date')
# Maximizes window
mng = plt.get_current_fig_manager()
mng.resize(800, 600)
plt.tight_layout()
nupic_anomaly_output.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录