def multi_bull_eyes(multi_data, cbar=None, cmaps=None, normalisations=None,
global_title=None, canvas_title='title', titles=None, units=None, raidal_subdivisions=(2, 8, 8, 11),
centered=(True, False, False, True), add_nomenclatures=(True, True, True, True),
pfi_where_to_save=None, show=True):
plt.clf()
n_fig = len(multi_data)
if cbar is None:
cbar = [True] * n_fig
if cmaps is None:
cmaps = [mpl.cm.viridis] * n_fig
if normalisations is None:
normalisations = [mpl.colors.Normalize(vmin=np.min(multi_data[i]), vmax=np.max(multi_data[i]))
for i in range(n_fig)]
if titles is None:
titles = ['Title {}'.format(i) for i in range(n_fig)]
h_space = 0.15 / n_fig
h_dim_fig = .8
w_dim_fig = .8 / n_fig
def fmt(x, pos):
# a, b = '{:.2e}'.format(x).split('e')
# b = int(b)
# return r'${} \times 10^{{{}}}$'.format(a, b)
return r"${:.4g}$".format(x)
# Make a figure and axes with dimensions as desired.
fig = plt.figure(figsize=(3 * n_fig, 4))
fig.canvas.set_window_title(canvas_title)
if global_title is not None:
plt.suptitle(global_title)
for n in range(n_fig):
origin_fig = (h_space * (n + 1) + w_dim_fig * n, 0.15)
ax = fig.add_axes([origin_fig[0], origin_fig[1], w_dim_fig, h_dim_fig], polar=True)
bulls_eye(ax, multi_data[n], cmap=cmaps[n], norm=normalisations[n], raidal_subdivisions=raidal_subdivisions,
centered=centered, add_nomenclatures=add_nomenclatures[n])
ax.set_title(titles[n], size=10)
if cbar[n]:
origin_cbar = (h_space * (n + 1) + w_dim_fig * n, .15)
axl = fig.add_axes([origin_cbar[0], origin_cbar[1], w_dim_fig, .05])
cb1 = mpl.colorbar.ColorbarBase(axl, cmap=cmaps[n], norm=normalisations[n], orientation='horizontal',
format=ticker.FuncFormatter(fmt))
cb1.ax.tick_params(labelsize=8)
if units is not None:
cb1.set_label(units[n])
if pfi_where_to_save is not None:
plt.savefig(pfi_where_to_save, format='pdf', dpi=330)
if show:
plt.show()
评论列表
文章目录