def adversarial_discriminator(net, layers, scope='adversary', leaky=False):
if leaky:
activation_fn = tflearn.activations.leaky_relu
else:
activation_fn = tf.nn.relu
with ExitStack() as stack:
stack.enter_context(tf.variable_scope(scope))
stack.enter_context(
slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
weights_regularizer=slim.l2_regularizer(2.5e-5)))
for dim in layers:
net = slim.fully_connected(net, dim)
net = slim.fully_connected(net, 2, activation_fn=None)
return net
adversary.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录