def test_w_prep_list_fit():
"""[Model Selection] Test run with preprocessing as list."""
evl = Evaluator(
mape_scorer, cv=5, shuffle=False, random_state=100, verbose=2)
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators=[OLS()],
param_dicts={'ols': {'offset': randint(1, 10)}},
preprocessing=[Scale()], n_iter=3)
np.testing.assert_approx_equal(
evl.results['test_score-m']['pr.ols'],
-26.510708862278072)
assert evl.results['params']['pr.ols']['offset'] == 4
评论列表
文章目录