def test_w_prep_fit():
"""[Model Selection] Test run with preprocessing, single step."""
evl = Evaluator(mape_scorer, cv=5, shuffle=False, random_state=100,
verbose=True)
with open(os.devnull, 'w') as f, redirect_stdout(f):
evl.fit(X, y,
estimators=[OLS()],
param_dicts={'ols': {'offset': randint(1, 10)}},
preprocessing={'pr': [Scale()], 'no': []},
n_iter=3)
np.testing.assert_approx_equal(
evl.results['test_score-m']['no.ols'],
-24.903229451043195)
np.testing.assert_approx_equal(
evl.results['test_score-m']['pr.ols'],
-26.510708862278072, 1)
assert evl.results['params']['no.ols']['offset'] == 4
assert evl.results['params']['pr.ols']['offset'] == 4
评论列表
文章目录