def grabcuthm(im, hm):
size = hm.shape
bright = np.amax(hm)
ret,fgd = cv2.threshold(hm, FGD_BOUND * bright, 1 * bright, cv2.THRESH_BINARY)
fgd[1:size[0]/2] = 0
fgd[1:size[0], 1:size[1]/4] = 0
fgd[1:size[0], size[1]*3/4:size[1]] = 0
ret,pr_fgd = cv2.threshold(hm, FGD_BGD_SEP * bright, 1 * bright, cv2.THRESH_BINARY)
pr_fgd -= fgd
ret, bgd = cv2.threshold(hm, BGD_BOUND * bright, 1 * bright, cv2.THRESH_BINARY_INV)
bgd[size[0]/3:size[0]] = 0
ret,pr_bgd = cv2.threshold(hm, FGD_BGD_SEP * bright, 1 * bright, cv2.THRESH_BINARY_INV)
pr_bgd -= bgd
mask = cv2.GC_BGD * bgd + cv2.GC_FGD * fgd + cv2.GC_PR_BGD * pr_bgd + cv2.GC_PR_FGD * pr_fgd
mask = mask.astype(np.uint8, copy=False)
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
rect = (0, im.shape[:2][0]/2, im.shape[:2][1], im.shape[:2][0])
cv2.grabCut(im, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK)
mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
return mask2
评论列表
文章目录