def find_subimage_in_array(self, sub_image, main_image, threshold=0.40, value=False, debug=False):
"""
http://docs.opencv.org/3.1.0/d4/dc6/tutorial_py_template_matching.html
Args:
sub_image: A numby matrix containing the template we are trying to match
main_image: A numpy array containing the main image we are trying to find the template in
value: If true: Similarity is sent back.
threshold: A treshhold regarding hos sensitive the matching should be.
Returns:
A list containing touples:
If value is true:
The touples got he following elements(left,top,right,down,similarity)
Where similarity is a measure toward one
Else:
The touples got he following elements(left,top,right,down)
"""
# TODO: Check the test_init_wnd test for how to implement this :)
logging.debug("Doing a template match with {} as threshold".format(threshold))
methods = [cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF,
cv2.TM_SQDIFF_NORMED]
method = methods[0]
h, w = sub_image.shape[0:2]
res = cv2.matchTemplate(main_image, sub_image, method)
loc = np.where(res >= threshold)
locations = []
for pt in zip(*loc[::-1]):
if value:
locations.append((pt[0], pt[1], pt[0] + w, pt[1] + h, res[pt[1], pt[0]]))
else:
locations.append((pt[0], pt[1], pt[0] + w, pt[1] + h))
logging.debug("Found {} locations".format(len(locations)))
if debug:
plt.subplot(121), plt.imshow(res, cmap='gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(main_image, cmap='gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
for pt in zip(*loc[::-1]):
cv2.rectangle(main_image, pt, (pt[0] + w, pt[1] + h), (255, 0, 255), 2)
plt.imshow(main_image)
plt.show()
if value:
locations.sort(reverse=True, key=operator.itemgetter(4))
return list(map(operator.itemgetter(0, 1, 2, 3), locations))
评论列表
文章目录