def augment_image(rgbImg):
augmented_images = []
# original image
augmented_images.append(rgbImg)
# fliped x-axis
rimg = rgbImg.copy()
cv2.flip(rimg, 1, rimg)
augmented_images.append(rimg)
# add gaussian noise
for _ in range(10):
gaussian_noise = rgbImg.copy()
cv2.randn(gaussian_noise, 0, 150)
augmented_images.append(rgbImg + gaussian_noise)
augmented_images.append(rimg + gaussian_noise)
for _ in range(10):
uniform_noise = rgbImg.copy()
cv2.randu(uniform_noise, 0, 1)
augmented_images.append(rgbImg + uniform_noise)
augmented_images.append(rimg + uniform_noise)
return augmented_images
评论列表
文章目录