def findCircles():
# read image - 0 is greyscale, 1 - color
table_img = cv2.imread('training_sets/tables/extable6.png', 1)
table_img_col = table_img.copy()
table_img_grey = cv2.cvtColor(table_img, cv2.COLOR_BGR2GRAY)
table_orig = table_img_grey.copy()
# smooth
table_img_grey = cv2.blur(table_img_grey, (3,3))
# perform canny edge detection
table_canny = cv2.Canny(table_img_grey, 15, 30)
t_c_copy = table_canny.copy()
# Perform Hough circle transform
circles = cv2.HoughCircles(table_canny, cv2.HOUGH_GRADIENT, 1, 25, param1=90, param2=30, maxRadius=50, minRadius=14)
avgObjRadius = 0
stripes = []
solids = []
cueBall = (0,0)
pockets = []
if circles is not None:
print("Found circles")
circles = np.round(circles[0, :]).astype("int")
totAvgRadius = sum(i[2] for i in circles) // len(circles)
objBallCounter = 0
for x, y, r in circles:
if r <= totAvgRadius:
objBallCounter += 1
avgObjRadius += r
avgObjRadius = avgObjRadius // objBallCounter
for x, y, r in circles:
if r > 30:
pockets.append([x, y, r])
cv2.circle(table_img, (x, y), r, (0, 210, 30), 3)
else:
# store pixels within circle below
ball = isolateBall(x, y, avgObjRadius, table_img)
ballType = classifyBall(ball)
if ballType == "stripe":
stripes.append((x, y))
elif ballType == "solid":
solids.append((x, y))
elif ballType == "cue":
cueBall = (x, y)
else:
raise Exception("Ball can not be classified. X= " + x + " Y= " + y)
cv2.circle(table_img, (x, y), avgObjRadius, (150, 100, 255), 4)
#concatenate before+after images
img = np.concatenate((table_img_col, cv2.cvtColor(t_c_copy, cv2.COLOR_GRAY2BGR), table_img), axis=0)
filename = 'img.png'
cv2.imwrite(filename, img)
return filename
评论列表
文章目录