def image_postprocessing_depth(gray, depth, t_size_y, t_size_x, feedback, t):
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_gray_0_input.png', gray)
cv2.imwrite('feedback/image_' + str(t) + '_depth_0_input.png', gray)
# resize normal image
gray = cv2.resize(gray, (t_size_y, t_size_x))
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_gray_1_resize.png', gray)
# resize depth image
depth = cv2.resize(depth, (t_size_y, t_size_x))
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_depth_1_resize.png', depth)
# cut normal image
gray = gray[t_size_y/2-1:-1,:]
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_gray_2_cut.png', gray)
# cut depth image
depth = depth[t_size_y/2-1:-1,:]
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_depth_2_cut.png', depth)
# threshold filter for the grayscale image
ret,gray = cv2.threshold(gray,160,255,cv2.THRESH_BINARY)
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_gray_3_flt.png', gray)
# custom filter for the depth image
depth = cv2.bitwise_not(depth)
ret, depth = cv2.threshold(depth,165,255,cv2.THRESH_TOZERO)
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_depth_3_flt_inv.png', depth)
height, width = depth.shape
# subtract lowest gray-value
minval = np.min(depth[np.nonzero(depth)])
depth[np.nonzero(depth)] -= minval
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_depth_4_off.png', depth)
# return the added image
result = cv2.add(gray,depth)
if feedback:
cv2.imwrite('feedback/image_' + str(t) + '_final.png', result)
return result
# calculates the gray-scale image from ViZDoom
评论列表
文章目录