def mask_to_polygons(mask: np.ndarray, epsilon=5., min_area=10.,
fix=False) -> MultiPolygon:
if fix:
epsilon *= 4
image, contours, hierarchy = cv2.findContours(
((mask == 1) * 255).astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True) for cnt in contours]
if not contours:
return MultiPolygon()
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
all_polygons = to_multipolygon(MultiPolygon(all_polygons).buffer(0))
# return all_polygons - this was used to generate the final merges
if fix:
all_polygons = all_polygons.buffer(-1e-7)
all_polygons = all_polygons.buffer(-1e-7)
# FIXME - a great idea, but should be done after conversion to final coordinates
all_polygons = shapely.wkt.loads(
shapely.wkt.dumps(all_polygons, rounding_precision=8))
while not all_polygons.is_valid:
all_polygons = to_multipolygon(all_polygons.buffer(0))
all_polygons = shapely.wkt.loads(
shapely.wkt.dumps(all_polygons, rounding_precision=8))
return all_polygons
评论列表
文章目录