predict.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:dilation 作者: fyu 项目源码 文件源码
def predict(dataset_name, input_path, output_path):
    dataset = Dataset(dataset_name)
    net = caffe.Net(dataset.model_path, dataset.pretrained_path, caffe.TEST)
    label_margin = 186

    input_dims = net.blobs['data'].shape
    batch_size, num_channels, input_height, input_width = input_dims
    caffe_in = np.zeros(input_dims, dtype=np.float32)
    image = cv2.imread(input_path, 1).astype(np.float32) - dataset.mean_pixel

    image_size = image.shape
    output_height = input_height - 2 * label_margin
    output_width = input_width - 2 * label_margin
    image = cv2.copyMakeBorder(image, label_margin, label_margin,
                               label_margin, label_margin,
                               cv2.BORDER_REFLECT_101)

    num_tiles_h = image_size[0] // output_height + \
                  (1 if image_size[0] % output_height else 0)
    num_tiles_w = image_size[1] // output_width + \
                  (1 if image_size[1] % output_width else 0)

    prediction = []
    for h in range(num_tiles_h):
        col_prediction = []
        for w in range(num_tiles_w):
            offset = [output_height * h,
                      output_width * w]
            tile = image[offset[0]:offset[0] + input_height,
                         offset[1]:offset[1] + input_width, :]
            margin = [0, input_height - tile.shape[0],
                      0, input_width - tile.shape[1]]
            tile = cv2.copyMakeBorder(tile, margin[0], margin[1],
                                      margin[2], margin[3],
                                      cv2.BORDER_REFLECT_101)
            caffe_in[0] = tile.transpose([2, 0, 1])
            out = net.forward_all(**{net.inputs[0]: caffe_in})
            prob = out['prob'][0]
            col_prediction.append(prob)
        # print('concat row')
        col_prediction = np.concatenate(col_prediction, axis=2)
        prediction.append(col_prediction)
    prob = np.concatenate(prediction, axis=1)
    if dataset.zoom > 1:
        prob = util.interp_map(prob, dataset.zoom, image_size[1], image_size[0])
    prediction = np.argmax(prob.transpose([1, 2, 0]), axis=2)
    color_image = dataset.palette[prediction.ravel()].reshape(image_size)
    color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
    print('Writing', output_path)
    cv2.imwrite(output_path, color_image)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号