def getMatches(self, sceneImage):
"""
sceneImage: ?????array??
return dst: ????????
"""
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(self.MarkImage[:,:,0],None)
kp2, des2 = sift.detectAndCompute(sceneImage[:,:,0],None)
# create BFMatcher object
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# Match descriptors.
matches = flann.knnMatch(des1,des2,k=2)
# Sort them in the order of their distance.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good) < self.MIN_MATCH_COUNT:
return None
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = self.MarkImage.shape[:2]
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
self.SceneImage = sceneImage
self.DrawParams = draw_params
self.KP1 = kp1
self.KP2 = kp2
self.GoodMatches = good
return dst
评论列表
文章目录