def likelihood_map(prob_map,image) :
'''This functon generates the likelihood map based on either obj-surr/dist model
input: probability map
output:likelihood map, an image(each pixel value=corresponding probability)'''
global h_img,w_img,bin
sf=256.0/bin
image_10=image/sf
image_10=image_10.astype('uint8')
# creating a likelihood image acc. to obj-surr or obj-distractor model
a=image_10[:,:,0]
a=a.ravel()
b=image_10[:,:,1]
b=b.ravel()
c_=image_10[:,:,2]
c_=c_.ravel()
prob_image=prob_map[a,b,c_]
prob_image=prob_image.reshape((h_img,w_img))
prob_image1=prob_image*255
prob_image1=prob_image1.astype('uint8')
likemap=cv2.applyColorMap(prob_image1, cv2.COLORMAP_JET)
return likemap,prob_image1
lab_global_optimisation.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录