def readImg(FileList, data_shape):
mat = []
tmp = 0
ret = len(FileList)/(NUM_SAMPLES+1)
for i in range(ret):
for j in range(NUM_SAMPLES):
index = i * (NUM_SAMPLES+1) + j
img_1 = cv2.imread(FileList[index], 0)
img_11 = cv2.resize(img_1, (data_shape[2], data_shape[1]))
img_111 = np.multiply(img_11, 1/255.0)
img_2 = cv2.imread(FileList[index+1], 0)
img_22 = cv2.resize(img_2, (data_shape[2], data_shape[1]))
img_222 = np.multiply(img_22, 1/255.0)
flow = cv2.calcOpticalFlowFarneback(img_111, img_222, 0.5, 3, 15, 3, 5, 1.2, 0)
flow = np.array(flow)
flow_1 = flow.transpose((2,1,0))
flow_1 = flow_1.tolist()
mat.append(flow_1)
return mat
cnn_predict.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录