def get_data(image_id, a_size, m_size, p_size, sf):
rgb_data = get_rgb_data(image_id)
rgb_data = cv2.resize(rgb_data, (p_size*sf, p_size*sf),
interpolation=cv2.INTER_LANCZOS4)
# rgb_data = rgb_data.astype(np.float) / 2500.
# print(np.max(rgb_data), np.mean(rgb_data))
# rgb_data[:, :, 0] = exposure.equalize_adapthist(rgb_data[:, :, 0], clip_limit=0.04)
# rgb_data[:, :, 1] = exposure.equalize_adapthist(rgb_data[:, :, 1], clip_limit=0.04)
# rgb_data[:, :, 2] = exposure.equalize_adapthist(rgb_data[:, :, 2], clip_limit=0.04)
A_data = get_spectral_data(image_id, a_size*sf, a_size*sf, bands=['A'])
M_data = get_spectral_data(image_id, m_size*sf, m_size*sf, bands=['M'])
P_data = get_spectral_data(image_id, p_size*sf, p_size*sf, bands=['P'])
# lab_data = cv2.cvtColor(rgb_data, cv2.COLOR_BGR2LAB)
P_data = np.concatenate([rgb_data, P_data], axis=2)
return A_data, M_data, P_data
b3_data_iter.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录