PerspectiveCorrection.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:dataArtist 作者: radjkarl 项目源码 文件源码
def _process(self):
        w = self.display.widget
        img = w.image
        out = []
        v = self.pRef.value()

        if v == 'Reference points':
            # 2x3 point warp:
            r0, r1 = self._refPn
            pts0 = np.array([(h['pos'].y(), h['pos'].x())
                             for h in r0.handles]) + r0.pos()
            pts1 = np.array([(h['pos'].y(), h['pos'].x())
                             for h in r1.handles]) + r1.pos()
            # TODO: embed in PyerspectiveCorrection
            M = cv2.getAffineTransform(
                pts0.astype(
                    np.float32), pts1.astype(
                    np.float32))
            for n, i in enumerate(img):
                out.append(
                    # TODO: allow different image shapes
                    cv2.warpAffine(i, M, w.image.shape[1:3],
                                   borderValue=0))
        else:
            r = v == 'Reference image'
            e = self.pExecOn.value()
            for n, i in enumerate(img):
                if (e == 'all images' or
                        (e == 'current image' and n == w.currentIndex) or
                        (e == 'last image' and n == len(img) - 1)):
                    if not (r and n == self._refImg_from_own_display):
                        corr = self.pc.correct(i)

#                         if r and self.pSubPx.value():
#                             corr = subPixelAlignment(
#                                 corr, self._refImg,
#                                 niter=20,
#                                 grid=(self.pSubPx_y.value(),
#                                       self.pSubPx_x.value()),
#                                 method='smooth',
#                                 # maxGrad=2,
#                                 concentrateNNeighbours=self.pSubPx_neigh.value(),
#                                 maxDev=self.pSubPx_maxDev.value())[0]

                        out.append(corr)
        return out
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号