def align(self, imgDim, rgbImg, bb,
landmarks=None, landmarkIndices=INNER_EYES_AND_BOTTOM_LIP, scale=1.0):
r"""align(imgDim, rgbImg, bb=None, landmarks=None, landmarkIndices=INNER_EYES_AND_BOTTOM_LIP)
Transform and align a face in an image.
:param imgDim: The edge length in pixels of the square the image is resized to.
:type imgDim: int
:param rgbImg: RGB image to process. Shape: (height, width, 3)
:type rgbImg: numpy.ndarray
:param bb: Bounding box around the face to align. \
Defaults to the largest face.
:type bb: dlib.rectangle
:param landmarks: Detected landmark locations. \
Landmarks found on `bb` if not provided.
:type landmarks: list of (x,y) tuples
:param landmarkIndices: The indices to transform to.
:type landmarkIndices: list of ints
:param scale: Scale image before cropping to the size given by imgDim.
:type scale: float
:return: The aligned RGB image. Shape: (imgDim, imgDim, 3)
:rtype: numpy.ndarray
"""
assert imgDim is not None
assert rgbImg is not None
assert landmarkIndices is not None
assert bb is not None
bb_dlib = dlib.rectangle(left=bb[0], top=bb[1], right=bb[2], bottom=bb[3])
if landmarks is None:
landmarks = self.findLandmarks(rgbImg, bb_dlib)
npLandmarks = np.float32(landmarks)
npLandmarkIndices = np.array(landmarkIndices)
#pylint: disable=maybe-no-member
H = cv2.getAffineTransform(npLandmarks[npLandmarkIndices],
imgDim * MINMAX_TEMPLATE[npLandmarkIndices]*scale + imgDim*(1-scale)/2)
thumbnail = cv2.warpAffine(rgbImg, H, (imgDim, imgDim))
return thumbnail
评论列表
文章目录