def save_prediction():
model = get_model()
model.load_weights('model_weights_'+loss_name+'.h5')
img,mask= gen_random_image()
y_pred= model.predict(img[None,...].astype(np.float32))[0]
print('y_pred.shape', y_pred.shape)
y_pred= y_pred.reshape((IMAGE_H,IMAGE_W,NUMBER_OF_CLASSES))
print('np.min(mask[:,:,0])', np.min(mask[:,:,0]))
print('np.max(mask[:,:,1])', np.max(mask[:,:,1]))
print('np.min(y_pred)', np.min(y_pred))
print('np.max(y_pred)', np.max(y_pred))
res = np.zeros((IMAGE_H,5*IMAGE_W,3),np.uint8)
res[:,:IMAGE_W,:] = img
res[:,IMAGE_W:2*IMAGE_W,:] = cv2.cvtColor(mask[:,:,0],cv2.COLOR_GRAY2RGB)
res[:,2*IMAGE_W:3*IMAGE_W,:] = cv2.cvtColor(mask[:,:,1],cv2.COLOR_GRAY2RGB)
res[:,3*IMAGE_W:4*IMAGE_W,:] = 255*cv2.cvtColor(y_pred[:,:,0],cv2.COLOR_GRAY2RGB)
res[:,4*IMAGE_W:5*IMAGE_W,:] = 255*cv2.cvtColor(y_pred[:,:,1],cv2.COLOR_GRAY2RGB)
cv2.imwrite(loss_name+'_result.png', res)
categorical_crossentropy_example.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录