def visualizeFeatures(Features, Files, Names):
y_eig, coeff = pcaDimRed(Features, 2)
plt.close("all")
print y_eig
plt.subplot(2,1,1);
ax = plt.gca()
for i in range(len(Files)):
im = cv2.imread(Files[i], cv2.CV_LOAD_IMAGE_COLOR)
Width = 0.2; Height = 0.2; startX = y_eig[i][0]; startY = y_eig[i][1];
print startX, startY
myaximage = ax.imshow(cv2.cvtColor(im, cv2.cv.CV_RGB2BGR), extent=(startX-Width/2.0, startX+Width/2.0, startY-Height/2.0, startY+Height/2.0), alpha=1.0, zorder=-1)
plt.axis((-3,3,-3,3))
# Plot feaures
plt.subplot(2,1,2)
ax = plt.gca()
for i in range(len(Files)):
plt.plot(numpy.array(Features[i,:].T));
plt.xticks(range(len(Names)))
plt.legend(Files)
ax.set_xticklabels(Names)
plt.setp(plt.xticks()[1], rotation=90)
plt.tick_params(axis='both', which='major', labelsize=8)
plt.tick_params(axis='both', which='minor', labelsize=8)
plt.show()
featureExtraction.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录