def project_on_road(self, image_input):
image = image_input[self.remove_pixels:, :]
image = self.trans_per(image)
self.im_shape = image.shape
self.get_fit(image)
if self.detected_first & self.detected:
# create fill image
temp_filler = np.zeros((self.remove_pixels,self.im_shape[1])).astype(np.uint8)
filler = np.dstack((temp_filler,temp_filler,temp_filler))
# create an image to draw the lines on
warp_zero = np.zeros_like(image).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
ploty = np.linspace(0, image_input.shape[0]-1, image_input.shape[0] )
left_fitx = self.best_fit_l[0]*ploty**2 + self.best_fit_l[1]*ploty + self.best_fit_l[2]
right_fitx = self.best_fit_r[0]*ploty**2 + self.best_fit_r[1]*ploty + self.best_fit_r[2]
# recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, self.Minv, color_warp.shape[-2:None:-1])
left_right = cv2.warpPerspective(self.left_right, self.Minv, color_warp.shape[-2:None:-1])
# combine the result with the original image
left_right_fill = np.vstack((filler,left_right))
result = cv2.addWeighted(left_right_fill,1, image_input, 1, 0)
result = cv2.addWeighted(result, 1, np.vstack((filler,newwarp)), 0.3, 0)
# get curvature and offset
self.calculate_curvature_offset()
# plot text on resulting image
img_text = "radius of curvature: " + str(round((self.left_curverad + self.right_curverad)/2,2)) + ' (m)'
if self.offset< 0:
img_text2 = "vehicle is: " + str(round(np.abs(self.offset),2)) + ' (m) left of center'
else:
img_text2 = "vehicle is: " + str(round(np.abs(self.offset),2)) + ' (m) right of center'
result2 = cv2.resize(result, (0,0), fx=self.enlarge, fy=self.enlarge)
cv2.putText(result2,img_text, (15,15), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255),1)
cv2.putText(result2,img_text2,(15,40), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255),1)
return result2
# if lanes were not detected output source image
else:
return cv2.resize(image_input,(0,0), fx=self.enlarge, fy=self.enlarge)
lane-detect-pi.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录