def binaryMask(frame, x0, y0, width, height ):
global guessGesture, visualize, mod, lastgesture, saveImg
cv2.rectangle(frame, (x0,y0),(x0+width,y0+height),(0,255,0),1)
roi = frame[y0:y0+height, x0:x0+width]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),2)
#blur = cv2.bilateralFilter(roi,9,75,75)
th3 = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,11,2)
ret, res = cv2.threshold(th3, minValue, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#ret, res = cv2.threshold(blur, minValue, 255, cv2.THRESH_BINARY +cv2.THRESH_OTSU)
if saveImg == True:
saveROIImg(res)
elif guessGesture == True:
retgesture = myNN.guessGesture(mod, res)
if lastgesture != retgesture :
lastgesture = retgesture
#print lastgesture
## Checking for only PUNCH gesture here
## Run this app in Prediction Mode and keep Chrome browser on focus with Internet Off
## And have fun :) with Dino
if lastgesture == 3:
jump = ''' osascript -e 'tell application "System Events" to key code 49' '''
#jump = ''' osascript -e 'tell application "System Events" to key down (49)' '''
os.system(jump)
print myNN.output[lastgesture] + "= Dino JUMP!"
#time.sleep(0.01 )
#guessGesture = False
elif visualize == True:
layer = int(raw_input("Enter which layer to visualize "))
cv2.waitKey(1)
myNN.visualizeLayers(mod, res, layer)
visualize = False
return res
#%%
评论列表
文章目录