def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255):
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the derivative in x or y given orient = 'x' or 'y'
if orient == 'x':
sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
if orient == 'y':
sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
# 3) Take the absolute value of the derivative or gradient
abs_sobel = np.absolute(sobel)
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
# 6) Return this mask as your binary_output image
return binary_output
评论列表
文章目录