def blur_mask_old(img):
assert isinstance(img, numpy.ndarray), 'img_col must be a numpy array'
assert img.ndim == 3, 'img_col must be a color image ({0} dimensions currently)'.format(img.ndim)
blur_mask = numpy.zeros(img.shape[:2], dtype=numpy.uint8)
for mask, loc in get_masks(img):
logger.debug('Checking Mask: {0}'.format(numpy.unique(mask)))
logger.debug('SuperPixel Mask Percentage: {0}%'.format(int((100.0/255.0)*(numpy.sum(mask)/mask.size))))
img_fft, val, blurry = main.blur_detector(img[loc[0]:loc[2], loc[1]:loc[3]])
logger.debug('Blurry: {0}'.format(blurry))
if blurry:
blur_mask = cv2.add(blur_mask, mask)
result = numpy.sum(blur_mask)/(255.0*blur_mask.size)
logger.info('{0}% of input image is blurry'.format(int(100*result)))
return blur_mask, result
评论列表
文章目录