def __MR_fill_superpixel_with_saliency(self,labels,saliency_score):
sa_img = labels.copy().astype(float)
for i in range(sp.amax(labels)+1):
mask = labels == i
sa_img[mask] = saliency_score[i]
return cv2.normalize(sa_img,None,0,255,cv2.NORM_MINMAX)
评论列表
文章目录