def read_images(filenames, domain=None, image_size=64):
images = []
for fn in filenames:
image = cv2.imread(fn)
if image is None:
continue
if domain == 'A':
kernel = np.ones((3,3), np.uint8)
image = image[:, :256, :]
image = 255. - image
image = cv2.dilate( image, kernel, iterations=1 )
image = 255. - image
elif domain == 'B':
image = image[:, 256:, :]
image = cv2.resize(image, (image_size,image_size))
# Change the order of channels
r,g,b = cv2.split(image)
image = cv2.merge([b,g,r])
# Scale from [0, 255] to [-1, 1]
image = image.astype(np.float32) / 255.
image -= 0.5
image *= 2.0
# TensorFlow shape (height, width, channels)
#image = image.transpose(2,0,1)
images.append( image )
images = np.stack( images )
return images
评论列表
文章目录