def hsvPassShadowRemoval(src, shadowThreshold):
blurLevel = 3
height, width = src.shape[:2]
imgHSV = cv2.cvtColor(src, cv2.COLOR_RGB2HSV)
gaussianBlur = cv2.GaussianBlur(imgHSV, (blurLevel, blurLevel), 0)
hueImg, satImg, valImg = cv2.split(gaussianBlur)
NSVDI = np.zeros((height, width, 1), np.uint8)
count = height * width
with np.errstate(divide='ignore'):
# for i in range(0, height):
# for j in range(0, width):
# sat = int(satImg[i, j])
# val = int(valImg[i, j])
# NSVDI[i, j] = (satImg[i, j] - valImg[i, j]) / ((satImg[i, j] + valImg[i, j]) * 1.0)
NSVDI = (satImg + valImg) / ((satImg - valImg) * 1)
thresh = np.sum(NSVDI)
avg = thresh / (count * 1.0)
# for i in range(0, height):
# for j in range(0, width):
# if NSVDI[i, j] >= 0.25:
# hueImg[i, j] = 255
# satImg[i, j] = 255
# valImg[i, j] = 255
# else:
# hueImg[i, j] = 0
# satImg[i, j] = 0
# valImg[i, j] = 0
if shadowThreshold is None:
avg = avg
else:
avg = shadowThreshold
np.where(NSVDI > avg, 255, 0)
_, threshold = cv2.threshold(NSVDI, avg, 255, cv2.THRESH_BINARY_INV)
output = threshold
return output
评论列表
文章目录