def process_data():
all_data = []
img_size = 256
contour_path= os.path.join(c.data_manual, 'manual_contours_ch4', 'contours')
image_path = os.path.join(c.data_manual, 'manual_contours_ch4', 'images')
for fn in [f for f in os.listdir(contour_path) if 'jpg' in f]:
if not os.path.exists(os.path.join(image_path, fn)):
continue
img = cv2.imread(os.path.join(image_path, fn), 0)
img = cv2.resize(img, (img_size,img_size)).reshape(1,1,img_size,img_size)
label = cv2.imread(os.path.join(contour_path, fn), 0)
label = cv2.resize(label, (img_size,img_size))
_,label = cv2.threshold(label, 127,255,cv2.THRESH_BINARY_INV)
label = label.reshape(1,1,img_size,img_size)/255
all_data.append([img,label])
np.random.shuffle(all_data)
all_imgs = np.concatenate([a[0] for a in all_data], axis=0)
all_labels = np.concatenate([a[1] for a in all_data], axis=0)
n = all_imgs.shape[0]
destpath = os.path.join(c.data_intermediate, 'ch4_{}.hdf5'.format(img_size))
if os.path.exists(destpath):
os.remove(destpath)
u.save_hd5py({'images': all_imgs, 'labels': all_labels}, destpath, 5)
评论列表
文章目录