def label(image) :
'''This function along with click_and_crop() helps in labelling object and background.
Input : Input image
Output: selected region of interest(either obj or distractor)'''
global refPt,cropping,img_copy,clone,list_refpt
#image1=copy.deepcopy(image)
#clone = image1.copy()
#img_copy=image1.copy()
cv2.namedWindow("image")
cv2.setMouseCallback("image", click_and_crop)
print "Label the object"
print "After making a bounding box, press 'c' "
print "if you wish to select the object again, press 'r' "
while True:
# display the image and wait for a keypress
cv2.imshow("image", img_copy)
key = cv2.waitKey(1) & 0xFF
# if the 'r' key is pressed, reset the cropping region
if key == ord("r"):
image = clone.copy()
img_copy=image.copy()
# if the 'c' key is pressed, break from the loop
elif key == ord("c"):
break
# if there are two reference points, then crop the region of interest
# from the image and display it
if len(refPt) == 2:
roi = clone[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
cv2.imshow("ROI", roi)
print "press any key"
cv2.waitKey(0)
cv2.destroyAllWindows() # close all open windows
obj_img=roi # roi containing the object
list_refpt.append(refPt)
return obj_img
lab_global_optimisation.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录