def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
"""
visualize all detections in one image
:param im_array: [b=1 c h w] in rgb
:param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
:param class_names: list of names in imdb
:param scale: visualize the scaled image
:return:
"""
import cv2
import random
color_white = (255, 255, 255)
im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
# change to bgr
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
for j, name in enumerate(class_names):
if name == '__background__':
continue
color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256)) # generate a random color
dets = detections[j]
for det in dets:
bbox = det[:4] * scale
score = det[-1]
if score < threshold:
continue
bbox = map(int, bbox)
cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
return im
评论列表
文章目录