def maxImagen(img, tamanyo):
''''''
bOri, gOri, rOri = cv2.split(img)
filas,columnas,canales = img.shape
#pad_size = tamanyo/2
#padded_max = np.pad(img, (pad_size, pad_size),'constant',constant_values=np.inf)
max_channel = np.zeros((filas,columnas))
for r in range(1,filas):
for c in range(1,columnas):
window_b = bOri[r:r+tamanyo,c:c+tamanyo]
window_g = gOri[r:r+tamanyo,c:c+tamanyo]
window_r = rOri[r:r+tamanyo,c:c+tamanyo]
max_bg = np.max(window_b+window_g)
max_r = np.max(window_r)
max_ch = max_r-max_bg #(max_r-max_bg)+np.absolute(np.min(max_r-max_bg))
max_ch_array = np.array([max_ch])
max_channel[r,c] = max_ch_array
min_max_channel = np.min(max_channel)
background_bOri = np.mean(bOri*min_max_channel)
background_gOri = np.mean(gOri*min_max_channel)
BbOri = np.absolute(background_bOri)
BgOri = np.absolute(background_gOri)
return BbOri, BgOri #max_channel,
评论列表
文章目录