dm_preprocess.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:dream2016_dm 作者: lishen 项目源码 文件源码
def select_largest_obj(self, img_bin, lab_val=255, fill_holes=False, 
                           smooth_boundary=False, kernel_size=15):
        '''Select the largest object from a binary image and optionally
        fill holes inside it and smooth its boundary.
        Args:
            img_bin (2D array): 2D numpy array of binary image.
            lab_val ([int]): integer value used for the label of the largest 
                    object. Default is 255.
            fill_holes ([boolean]): whether fill the holes inside the largest 
                    object or not. Default is false.
            smooth_boundary ([boolean]): whether smooth the boundary of the 
                    largest object using morphological opening or not. Default 
                    is false.
            kernel_size ([int]): the size of the kernel used for morphological 
                    operation. Default is 15.
        Returns:
            a binary image as a mask for the largest object.
        '''
        n_labels, img_labeled, lab_stats, _ = \
            cv2.connectedComponentsWithStats(img_bin, connectivity=8, 
                                             ltype=cv2.CV_32S)
        largest_obj_lab = np.argmax(lab_stats[1:, 4]) + 1
        largest_mask = np.zeros(img_bin.shape, dtype=np.uint8)
        largest_mask[img_labeled == largest_obj_lab] = lab_val
        # import pdb; pdb.set_trace()
        if fill_holes:
            bkg_locs = np.where(img_labeled == 0)
            bkg_seed = (bkg_locs[0][0], bkg_locs[1][0])
            img_floodfill = largest_mask.copy()
            h_, w_ = largest_mask.shape
            mask_ = np.zeros((h_ + 2, w_ + 2), dtype=np.uint8)
            cv2.floodFill(img_floodfill, mask_, seedPoint=bkg_seed, 
                          newVal=lab_val)
            holes_mask = cv2.bitwise_not(img_floodfill)  # mask of the holes.
            largest_mask = largest_mask + holes_mask
        if smooth_boundary:
            kernel_ = np.ones((kernel_size, kernel_size), dtype=np.uint8)
            largest_mask = cv2.morphologyEx(largest_mask, cv2.MORPH_OPEN, 
                                            kernel_)

        return largest_mask
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号